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One-dimensional nondiffracting pulses
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A general expression describing nondiffracting pulses whose transverse profile is a one-dimensional image
is presented. The pulse turns out to be expressed as a superposition of two fields, possessing a purely transla-
tional dynamics, whose profiles are related to the field distribution on the the waist plane through an Hilbert
transformation. The space-time structure of the generally X-shaped pulse is investigated and a simple relation
connecting its transverse and the longitudinal widths is established. Specific analytical examples are considered
and, in particular, the fundamental one-dimensional X waves are deduced and compared to their two-
dimensional counterparts.
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I. INTRODUCTION spreading, there are also situations of practical interest where
) S ) ) it is important to considefl +1)D nondiffracting pulses. For
The_mve_stlgatlon of nondiffracting and, more generally_, example, if optical propagation in a slab waveguide is con-
shape-invariant pulses has attracted a good deal of attentiqrned, it is evident that the modal structure of the electro-

in the last decade. An experimental observation of opticaagnetic field affects only the transverse direction parallel to
monochromatic diffraction-free beams dates back to Dumifpe thickness of the slab, leaving the coordinate along the

et al. [1] and has considerably increased the interest of reprthogonal direction free. The part of the electromagnetic
searchers in the subject of diffraction-free linear propagationfie|q depending on the free coordinate can thus be required to
In fact, the possibility of producing monochromatic nondif- he 5 gne-dimensional nondiffracting pulse.

fracting beam and limited diffraction pulses may find many | the present paper, we investigate+ 1)D nondiffract-

applications in optical communicatiorf€] and in all those 4 pulses propagating in vacuum. As expected, the reduced
field (e.g., near-field optical microscop3-5]) where dif- dimensionality allows us to fully understand their dynamics.
fraction hampers the fully exploitation of the directional e start from a general representations(®# 1)D nondif-
progaganonhal character ththe optmallﬂeld. o 1indracting pulses and obtain an expression valid f#1)D
d’.“ongtt et non monoc;hrowa.ttlcdplé.?fes,tt. e m°|St stri 'nxgpulses, simply imposing that the field distribution on the
and importan lcl)ngstars ed 'Ln' eL ! rgc(gon pllj ‘°§S O Awaist plane effectively depends on a single transverse coor-
waves, onginally introduced by -u an reenleid, 7. ginate. This has the immediate consequence of reducing the
These rather exotic fields turn out to be exact solutions of th imensionality of the Fourier spectrum of the pulse in the

wave equation and they have the remarkable property of M95ense that the necessary plane waves belong to two straight

:gly pr_opag;tahingxin vacuuhm wilt)hout at';‘y distjogiqt?]—_la. lines in thek space rather than to a cone. As a consequence,
-xperimentally, 2 waves nhave been observed DOt IN aCOUSgq 5re gple to express the pulse as a superposition of two
tics [7] and in opticg[13-15. On the other hand, optical X fields whose space-time dependencies sare)(z—Vt) and

waves exhibit superluminal features and possess an infini : : .
. . . + - -
amount of energy, the first one not being a serious shortcom- 7(z= V1), respectivelyx being the only transverse coord

) : . . o . nate andn a parameter related to the velocity of the pulse.
ing since it can be proved that special relativity is not vio The relevance of the description stems from the fact that

lated [16].’ w_hile the second is a consequence of the mOde{hese two fields are simply related to the waist field-
schematizatiof17]. distribution through an Hilbert transformation. Exploiting

A nondiffracting pulse propagating along a given direc'our expression describing one-dimensional nondiffractin
tion is a(2+1)-dimensional (2+1)D] object since the two P 9 ) 9
ulses, we are able to derive some general properties char-

transverse coordinates are independent while the Iongitudin%lCterizing their dynamics. First, we prove that the field pro-

ggtei o?wngf;:(iisge algpzag]g()rg:z'g?;’ sgot:;?r:;tglyé\?fnﬁ??gzﬁle is generally X shaped in the case of bell-shaped distribu-
y play ; tions of waist field and relate the semiaperture angle to the

interest in nondiffracting pulses arises from the fact that the3(/eIOCity of the pulse. Furthermore, we show that the trans-
are three-dimensional objects not undergoing the dn‘fracuvg/erse and Iongitudinél widths of thé pulse are generally con-

nected by a simple and intuitive relation, as expected be-
cause of the strong space-time coupling governing
*Electronic address: alessandro.ciattoni@aquila.infn.it nondiffracting pulses. In order to test these properties, some
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analyticglly workable examplgs, among wh_ich we conside=0, Eq.(4) gives? and, subsequently, E¢l) gives the pulse
the family of pulses representing the one-dimensional counfor everyz. It is worth noting that here there is no constrain

terpart of the(2+1)D fundamental X waves. Apart from on the boundary field distributiof‘(rL,O), except the obvi-

B e auous %003 recuremen that bth the nlgras n B¢, and (2
and G?/eenleaf 9 converge. In this sense, any imageZat0 can be stored in
: the waist of the pulse thus allowing a sort of diffraction-free

transmission of arbitrary two-dimensional images. Since any

image stored irf(r 1 ,0) travels without suffering diffractive
Let us consider an arbitrary nondiffracting optical pulse,spreading, the transmission is characterized by an unlimited
rigidly traveling along thez-axis in vacuum, with speed.  resolution. From a physical point of view, the arbitrariness of

The complex analytic signzi1 of any cartesian component ?(rL,O) is a consequence of the mentioned conical spectral

f=Rgf] of the electromagnetic field can be expressed astructure of nondiffracting pulses. More specifically, each
[17,18 Fourier component of(r , ,0) (labeled byk ), excites only
the plane wave whose frequency allows its wave vector to
?(rl,Z) - f dzkieikL-rLeinlkL\Z?(kl), (1) belong to the cone, preventing, for example, the appearance
of evanescent waves.
Exploiting the arbitrariness of the boundary distribution

f(r ;,0), we want now to investigate the class of nondiffract-
ing pulses exhibiting translation invariance along a given
transverse directioone-dimensional nondiffracting pulses,
ONP), that is pulses whose transverse profile is, at any plane

o 1 per Z=Z, a one-dimensional image. In particul&(r , ,0) must
= 2’ (2) admit a translational invariance direction and, since a fully
rotational invariance around the longitudirmal direction is
whereV?= &+ 4] +d;. The rigid motion of the pulse formally present, we can only requifér , ,0) not to depend ory, or
stems from its dependence arandt only throughZ which
is the longitudinal coordinate in a reference frame where the ?(M,O) = f(x, 0). (5)
pulse is at rest. The parametedepends on the speed of the ) ) )
pulse only and it possesses a useful geometrical interpret&ollowing the above propagation scheme, we substitute Eq.
tion. More precisely, from Eq(l) it is evident that the non- (5) into Eq. (4), thus obtaining
diffracting pulse emerges as a superposition of all the plane _ 1 [+ R _
waves whose wave vectoks=k | +k,&, belong to the cone flk )= —f dxe ke (x, 0) (k) = f(k)dk,), (6)
k,=7|k .| (obviously in thek spac¢ whose semiaperture 2m)
angle ¢ (called in literature Axicon ang)eis given by the ) ) ) ~ )
relation tany:= 771 [19]. It is also worth noting that the pulse Whered(k,) is the Dirac delta-function anttk,) is the one-
of Eqg. (1) also satisfies the two-dimensional wave equationdimensional Fourier transform of the functidix,0). The
R nondiffracting pulse corresponding to the boundary distribu-
1 ﬁ 3 tion of Eq.(5) is obtained after substituting E¢6) into Eq.
7022 3 (1), which yields

Il. GENERAL FORMALISM

where 1, =x&+ye,, k, =k&+y,8, Z=z-Vt, n=(V?/c?
-1)"12 ¢ is the speed of light in vacuum arfdk |) is an

arbitrary function. It is easy to check that the pulse in @g.
satisfy the three-dimensional wave equation

whereV? =g+, which shows howy plays the role of an
adimensional speed in the spdce,Z). Equation(3) agrees
with the general observation of R¢8] according to which a
N-dimensional nondiffracting pulse satisfies also aThis is the most general expression describing an ONP or a
(N-1)-dimensional wave equation. In order foto represent Pulseé which is at the same time nondiffracting and one di-
a genuine traveling pulse, it is necessary thag real, which ~ mensional. Note that(x,Z) depends orx andZ in a quite
implies V> c, thus recovering the well-known superluminal- similar way through two exponentials, and that both factors

ity of nondiffracting pulses. Evaluatinfjat Z=0 and invert- are affected by the functioﬂkx) at the same time. Sincé

f(x,2) = J - dk ekoe TdIZF (k). (7)

ing the obtained Fourier integral we readily get =z-Vt, the space and temporal behaviors of the pulse are
closely related, resulting in a strong space-time coupling
?(kL) — fd2kie—iki-uf(rbo), (4) which is typical of nondiffacting pulsed.8].
(2m)? The pulse in Eq(7) contains only the plane wavégeach

hatT is th i onal Four ; f h one being eigen-solutions of E) afterV2L is replaced by
so that 'S_ t e two- |men5|.ona ourier transform of the 32x], Whosg wave vectors belong.to the two straight likgs
boundary fieldf(r , ,0). Equationg1) and(4) allow us to set =ylk,| which are the intersection between the coke
up a procedure for describing any nondiffracting pulse: In=7lk | and the pland,=0. The main features characterizing
the rest reference, once the field distribution is knowiZ at the pulse can be pointed out by representing it as a superpo-
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sition of two fields, each containing the plane waves belong-x_-nz
ing to one of the two linek,= 7k, andk,=-7nk, (with k,>0). "\ ;
After some manipulation, Eq7) can be rewritten as -

f(x,2) = FD(x = 52) + FO(x+ 2), (8)
where we introduced the functions

PO = [ dkeinn kit ©

where 6(x) is the usual step-function. Note that, as a conse-
quence of Eq(3), the pulse in Eq(7) must satisfy the one-
dimensional wave equation

A_1A a0
Ny )
and that, consequently, EQ(8) coincides with the )
D'Alembertian solution of this equation. Equati@8) con- FIG. 1. Typical geometry of a ONP.

tains a basic decomposition since it recasts the problem of
evaluating an ONP into that of evaluating the pair of func-incide with their own distributions aZ=0 translated, along

tions defined in Eq(9). From this equation it is evident that the x-axis, from x=0 to x= 7IZ and x=-1Z, respectively.
F*(&) and F(¢) are obtained from the functioh(x,0)  Suppose that the boundary distributidfx,0) is localized
[whose Fourier transform u’s(kx)] by suppressing the posi- around the originx=0. It is easy to show that the Hilbert
tive k,>0 and negative,<0 part of the spectrum, respec- transformf(¢) is also localized around the origin so that
tively. Introducing the definition of(k,) from Eq.(6) into  the functions=®)(¢) are not negligible only in a given neigh-
Eq. (9) and performing the integral ovés, we obtain, after bor of £=0. Therefore, in the planaZ, the fieldsF™(x
introducing suitable terms ekpek,) for ensuring conver- —#Z) and F)(x+2Z) globally resides around the straight

gence lines x=+7Z (at least asymptotically foEZ large enough
. respectively, so tha{see Fig. 1 the overall shape of the

Fe)(g) = +i +°°d f(x,0) (1) pulse is that of a letter X whose semiaperture anglés

(E-x) Fie' given by tan¢$=n (one-dimensional X waye Since 7 is

o _ directly related tov, it is evident that the speed of the pulse
where the limite— 0" is understood to be taken after the can be experimentally measured simply measu#n@aking
evaluat|on of the integral. Exploiting the well-known relation into account the relation connecting the Axicon angle® »
(xxie)™'=P(1/x) Fims(x) where P indicates the Cauchy we deduce thaty=7/2~-y. Around the origin of the plane

principal value, Eq(11) finally yields xZ, the pulse generally exhibits a peak since the overlap
1 region betweerr ") (x— »Z) andF)(x+ 5Z) is there not neg-
FO() = 2[f(0 F i), (12  ligible. .
2 In the case of even boundary distributiori(x,0)
where :?(—X,O) the spatial properties of the central peak can be
PR simply described. Let us consider the transverse and longitu-
H?(g) = lpf dxfég—’?() (13) dinal autocorrelation widthg20] given by
o J_ _
~ +oo +00 2
is the Hilbert transform of(£,0). Equation(12) relates the ‘f dx}(x, 0) U dz“f(o,z)
functionsF® to the boundary distribution of the pulse and to o |
its Hilbert transform. The propagation scheme for ONP is L o . o '
thus as follows: From the knowledge of boundary distribu- f dx/f(x,0)[? f dz|f(0.2)?
tion f(x, 0) of the pulse, it is sufficient to evaluate its Hilbert - -
transform so that Eq8), with the aid of Eq(12), gives the (14)

pulse for everyZ.

respectively. The former is an effective width of the bound-

ary distributionf(x,O) whereas the latter is a measure of the

longitudinal width of the on-axigx=0) pulse f(0,Z). We
Equation(8) states that the ONP is the superposition ofhave chosen these kinds of widths since it can be shse®

two fields whose profiles, at any transverse plameZ, co-  the Appendiy that, for our nondiffracting pulses, the relation

IIl. SPATIAL CHARACTERIZATION OF ONP
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1
A” = Z_AJ_ (15)
n

is satisfied. This is a remarkable relation joining the longitu-
dinal length of the central peak to its lateral width and it is an
evident manifestation of the strong space-time coupling char-

acterizing nondiffracting pulse. In fact, the quantityr

=A,/V may be regarded as the time duration of the central

peak and Eq(15) states that it is uniquely fixed by the trans-

verse lateral extension éfx,0) and by the velocity of the
pulse. Equatiori15) has a simple and intuitive graphical in-

terpretation. To this end, first note that it is easy to prove that,

introducing the widths of the function§®)(¢), one has
A®=A /2 (see the Appendix Referring to Fig. 1, it is evi-
dent that the central peak of the pulse, alongziais, prac-
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FIG. 2. Plot of the normalized field IRE#fO] of a ONP pulse

tically fall off when the overlap region between the two arms\hose boundary distribution is the sirfunction of Eq.(16), as a

vanishes, i.e., whe | /4=7A,/2, which coincide with Eq.

(15).

IV. ANALYTICAL EXAMPLES

function of Kx andKZ. The speed of the pulse chosen for this plot
is V=1.1c, corresponding tay=2.18.

ok = fos™ ke, (19)

In order to specialize the above general discussion, wa&vheren=0,1,..., andy ands are constants. The interest in
now consider some examples admitting analytical solutionsthis example emerges from the fact that these ONPs are the

Consider the ONP whose boundary distribution is

sin(Kx)
Kx '

f(x,0) =, (16)
where f, and K are constants, that is the well-known sinc

distribution. The functionf(x,O) is peaked at the origix
=0 and its width, according to Eqel4), is A | =#/K. It is

straightforward to prove that [20] H?(g)zfo[l
—-cogK )]/ (K§), so that the functions defined in Ed.2) can

be expressed as
K
sin<—§>
_\2/

K&

(note that their moduli are peaked&t0). Inserting Eq(17)
into Eq. (8) we readily get

F&(8) = foe™¥? (17)

7KZ + &iKx sin(Kx) — 7KZ cogKx)]

f(x,2)=f :
(x,2) =", |K2(x2—7]222)

(18)

In Fig. 2, we plot, foryp=2.18 (corresponding td/=1.1c),
the normalized field Hé/f,] from Eg. (18). Note that, as
expected, the field corresponding to the boundary sinc distr
bution (at Z=0) breaks, for increasing, into two arms lying
on the two linesx=»Z and x=-»Z, respectively. From the
second of Eqs(14) and(18) we obtain a longitudinal width
A=l (27K), which, compared withh | =7/K, confirms Eq.
(15) in this particular case.

one-dimensional counterpart of the well-known two-
dimensional X waves of Lu and Greenldaf, so that they
may be termed one-dimensional X waves. Inserting(E§)
into Egs.(9) we obtain

(20)

1+i=
S

|
FE(o = foﬁ-

Note that botH:gi> are peaked at the origis,being a param-
eter setting their widths. Even if any one-dimensional X
wave f,(x,2) of this family can be directly obtained from
Eq. (8) with the aid of Eq.(20), it is convenient here to use
the relation

“ s 0 \"
fn(X'Z)_(;]E) fo(x,2), (21
where
o1-%)
fo(X,Z):fo< i7]Z>2 (X)z’ (22)
1-—| +|-
S S

as it can be shown by substituting E49) into Eqg. (7). In
analogy with the two-dimensional cagél,19, Eq. (21)

ig,hows that the whole family of one-dimensional X waves is

obtained by repeatedly differentiating the first pui§©<,Z).

In Fig. 3 we plot the normalized field Rig/f,] of then=0
and n=1 one-dimensional X waves, whose speedVis
=1.1c, corresponding top=2.18. The essential features of
these fields are quite similar to those of the sinc X wave

As a further analytical example, let us consider the familydepicted in Fig. 1. Comparing the one-dimensional X waves

of ONP whose spectrum is

of Eq. (21) with the two-dimensional ong41,19, we note a
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dinal widths of the pulséa relation having its origin in the
strong space-time coupling proper of nondiffracting pulses

In addition, we have considered two analytical examples
where the above-mentioned properties can be checked. The
second of this example is of some interest in the frame of
shape-invariant beams, since it represents the one-
dimensional counterpart of the well-known family of funda-
mental X waves.

@

“
AT\
ot
AT
AN ‘\\\\\‘\““

inwa

APPENDIX: TRANSVERSE AND LONGITUDINAL
WIDTHS

The widths defined in Eq(14) can be manipulated by
exploiting Eq.(7). Substituting the former in the expression
for A, of Eq.(14), it is straightforward to prove that

f(0)?

f dkff(iol?

A = (A1)

where use has been made of the Parseval theorem for chang-
ing the denominator. Less straightforward is the manipula-
tion of Aj; after substituting Eq(.7) into its expression of Eq.

(14), we obtain
2 +o0 - +o0 )
= f dkf(ky) f dzd?
NJ - 0

2

. (A2)

400

dKF (k) 8|k - ki)

= oo
21 ~
71 oo

FIG. 3. Plot of the normalized field i&/fo] pertaining to the  \yhere the integral representation of the Dirac delta function
one-dimensional X wave®) n=0 and(b) n=1 as a function ok/s 55 peen exploited in the denominator. The integral @ver
and Z/s. Tol?,e Spe'“idz i‘;the pulse chosen for this ploMs1.1c,  he nymerator can be handled by introducing a convergence
corresponding tay=2.18. factor exgg—eZ) (the limit e— 0" being understood to be

) taken at the end of calculationso that
remarkable resemblance between their structures. Con-

versely, the most striking difference is the absence of half- e [
) ; . dze (e-ik)Z —
integer powers of in the denominator of the formers. More- o K+ie
over, fo=~x72 for |x| — + whereas the first two-dimensional

X wave shows the asymptotical behavior (@f+y?)~2; this  where P indicates the Cauchy principal value and we have
implies that a one-dimensional X wave transversally decaysxploited the well-known relation  (x+ie)™t
faster than the two-dimensional X wave of the same order.=P(1/x) * i7d(x). Taking into account the identity

= 78(K) + iP%, (A3)

S|k = [k ) = [O(ky) B(Ks) + 0(— k) (= ki) Tk, — K3)

+ [6(= ko 6(K}) + Bk B(— k) 18k + k)

Exploiting a formalism describing an arbitrary nondif- (A4)
fracting pulse propagating in vacuum, we have investigated
one-dimensional nondiffracting pulsé®NP), whose trans- and Eq.(A3), Eq(A2) becomes
verse profile is a one-dimensional image at any transverse
plane. We have deduced a general expression showing that
an ONP is the superposition of two fiel#§”, depending on 2
space and time only through the combinations 7(z- V1), A=—— =
respectively, and simply related to the boundary field distri- 7 f dkx|?(kx)|2+J dk;f(kx)?(— k)
bution f(x,0) by means of an Hilbert transform. The ob- - e
tained decomposition has allowed us to predict the major . R
ONP features, such as the characteristic X shape of the fiekf the case of even boundary conditidix, 0)=f(-x,0), we
profile and the relation between the transverse and longituhavef(k,)=f(-k,) so that Eq(A5) yields

V. CONCLUSIONS

2

- P 1~
‘ f(0) + ;PJ_OC dkxk—xf(kx)

(A5)
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= [0 [f(0)]?

1= s _ . (AG) A(i) = +o0 ~ y
7| 2| kP

—o0

(A8)

Comparing Eq(A6) and Eq.(Al), we obtain Eq(15). Let
us now evaluate the widths of the functidf¥ &), defined as

‘fjd&®(>

where we have exploited the relatiegX0)=1/2. In thecase

of even boundary conditioffor whicth(kX) :?(—kx)] we ob-
tain from Eqgs.(A8) and(Al) the relation

2

A® = (A7)

f dg[F* (&)

. . . AW =ZA | (A9)
Inserting Eq.(9) into Eq. (A7) we obtain 2
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