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A general expression describing nondiffracting pulses whose transverse profile is a one-dimensional image
is presented. The pulse turns out to be expressed as a superposition of two fields, possessing a purely transla-
tional dynamics, whose profiles are related to the field distribution on the the waist plane through an Hilbert
transformation. The space-time structure of the generally X-shaped pulse is investigated and a simple relation
connecting its transverse and the longitudinal widths is established. Specific analytical examples are considered
and, in particular, the fundamental one-dimensional X waves are deduced and compared to their two-
dimensional counterparts.
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I. INTRODUCTION

The investigation of nondiffracting and, more generally,
shape-invariant pulses has attracted a good deal of attention
in the last decade. An experimental observation of optical
monochromatic diffraction-free beams dates back to Durnin
et al. [1] and has considerably increased the interest of re-
searchers in the subject of diffraction-free linear propagation.
In fact, the possibility of producing monochromatic nondif-
fracting beam and limited diffraction pulses may find many
applications in optical communications[2] and in all those
field (e.g., near-field optical microscopy[3–5]) where dif-
fraction hampers the fully exploitation of the directional
propagational character of the optical field.

Among the non monochromatic pulses, the most striking
and important ones are the limited diffraction pulses or X
waves, originally introduced by Lu and Greenleaf[6,7].
These rather exotic fields turn out to be exact solutions of the
wave equation and they have the remarkable property of rig-
idly propagating in vacuum without any distortion[8–12].
Experimentally, X waves have been observed both in acous-
tics [7] and in optics[13–15]. On the other hand, optical X
waves exhibit superluminal features and possess an infinite
amount of energy, the first one not being a serious shortcom-
ing since it can be proved that special relativity is not vio-
lated [16], while the second is a consequence of the model
schematization[17].

A nondiffracting pulse propagating along a given direc-
tion is a s2+1d-dimensionalfs2+1dDg object since the two
transverse coordinates are independent while the longitudinal
one and the time appear combined, so that only this combi-
nation effectively plays the role of a coordinate. Even if the
interest in nondiffracting pulses arises from the fact that they
are three-dimensional objects not undergoing the diffractive

spreading, there are also situations of practical interest where
it is important to considers1+1dD nondiffracting pulses. For
example, if optical propagation in a slab waveguide is con-
cerned, it is evident that the modal structure of the electro-
magnetic field affects only the transverse direction parallel to
the thickness of the slab, leaving the coordinate along the
orthogonal direction free. The part of the electromagnetic
field depending on the free coordinate can thus be required to
be a one-dimensional nondiffracting pulse.

In the present paper, we investigates1+1dD nondiffract-
ing pulses propagating in vacuum. As expected, the reduced
dimensionality allows us to fully understand their dynamics.
We start from a general representations ofs2+1dD nondif-
fracting pulses and obtain an expression valid fors1+1dD
pulses, simply imposing that the field distribution on the
waist plane effectively depends on a single transverse coor-
dinate. This has the immediate consequence of reducing the
dimensionality of the Fourier spectrum of the pulse in the
sense that the necessary plane waves belong to two straight
lines in thek space rather than to a cone. As a consequence,
we are able to express the pulse as a superposition of two
fields whose space-time dependencies arex−hsz−Vtd and
x+hsz−Vtd, respectively,x being the only transverse coordi-
nate andh a parameter related to the velocity of the pulse.
The relevance of the description stems from the fact that
these two fields are simply related to the waist field-
distribution through an Hilbert transformation. Exploiting
our expression describing one-dimensional nondiffracting
pulses, we are able to derive some general properties char-
acterizing their dynamics. First, we prove that the field pro-
file is generally X shaped in the case of bell-shaped distribu-
tions of waist field and relate the semiaperture angle to the
velocity of the pulse. Furthermore, we show that the trans-
verse and longitudinal widths of the pulse are generally con-
nected by a simple and intuitive relation, as expected be-
cause of the strong space-time coupling governing
nondiffracting pulses. In order to test these properties, some*Electronic address: alessandro.ciattoni@aquila.infn.it
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analytically workable examples, among which we consider
the family of pulses representing the one-dimensional coun-
terpart of thes2+1dD fundamental X waves. Apart from
some formal differences, our one-dimensional X waves ex-
hibit by and large the same features of the X waves of Lu
and Greenleaf.

II. GENERAL FORMALISM

Let us consider an arbitrary nondiffracting optical pulse,
rigidly traveling along thez-axis in vacuum, with speedV.

The complex analytic signalf̂ of any cartesian component

f =Ref f̂g of the electromagnetic field can be expressed as
[17,18]

f̂sr ',Zd =E d2k'eik'·r 'eihuk'uZf̃sk'd, s1d

where r '=xêx+yêy, k'=kxêx+yyêy, Z=z−Vt, h=sV2/c2

−1d−1/2, c is the speed of light in vacuum andf̃sk'd is an
arbitrary function. It is easy to check that the pulse in Eq.(1)
satisfy the three-dimensional wave equation

¹2f̂ =
1

c2

]2f̂

] t2
, s2d

where¹2=]x
2+]y

2+]z
2. The rigid motion of the pulse formally

stems from its dependence onz and t only throughZ which
is the longitudinal coordinate in a reference frame where the
pulse is at rest. The parameterh depends on the speed of the
pulse only and it possesses a useful geometrical interpreta-
tion. More precisely, from Eq.(1) it is evident that the non-
diffracting pulse emerges as a superposition of all the plane
waves whose wave vectorsk =k'+kzêz belong to the cone
kz=huk'u (obviously in thek space) whose semiaperture
angle c (called in literature Axicon angle) is given by the
relation tanc=h−1 [19]. It is also worth noting that the pulse
of Eq. (1) also satisfies the two-dimensional wave equation

¹'
2 f̂ =

1

h2

]2f̂

] Z2 , s3d

where¹'
2 =]x

2+]y
2, which shows howh plays the role of an

adimensional speed in the spacesr ' ,Zd. Equation(3) agrees
with the general observation of Ref.[8] according to which a
N-dimensional nondiffracting pulse satisfies also a

sN-1d-dimensional wave equation. In order forf̂ to represent
a genuine traveling pulse, it is necessary thath is real, which
impliesV.c, thus recovering the well-known superluminal-

ity of nondiffracting pulses. Evaluatingf̂ at Z=0 and invert-
ing the obtained Fourier integral we readily get

f̃sk'd =
1

s2pd2 E d2k'e−ik'·r ' f̂sr ',0d, s4d

so that f̃ is the two-dimensional Fourier transform of the

boundary fieldf̂sr ' ,0d. Equations(1) and(4) allow us to set
up a procedure for describing any nondiffracting pulse: In
the rest reference, once the field distribution is known atZ

=0, Eq.(4) gives f̃ and, subsequently, Eq.(1) gives the pulse
for everyZ. It is worth noting that here there is no constrain

on the boundary field distributionf̂sr ' ,0d, except the obvi-
ous requirement that both the integrals in Eqs.(1) and (4)
converge. In this sense, any image atZ=0 can be stored in
the waist of the pulse thus allowing a sort of diffraction-free
transmission of arbitrary two-dimensional images. Since any

image stored inf̂sr ' ,0d travels without suffering diffractive
spreading, the transmission is characterized by an unlimited
resolution. From a physical point of view, the arbitrariness of

f̂sr ' ,0d is a consequence of the mentioned conical spectral
structure of nondiffracting pulses. More specifically, each

Fourier component off̂sr ' ,0d (labeled byk'), excites only
the plane wave whose frequency allows its wave vector to
belong to the cone, preventing, for example, the appearance
of evanescent waves.

Exploiting the arbitrariness of the boundary distribution

f̂sr ' ,0d, we want now to investigate the class of nondiffract-
ing pulses exhibiting translation invariance along a given
transverse direction(one-dimensional nondiffracting pulses,
ONP), that is pulses whose transverse profile is, at any plane

Z=Z̄, a one-dimensional image. In particular,f̂sr ' ,0d must
admit a translational invariance direction and, since a fully
rotational invariance around the longitudinalz- direction is

present, we can only requiref̂sr ' ,0d not to depend ony, or

f̂sr ',0d = f̂sx,0d. s5d

Following the above propagation scheme, we substitute Eq.
(5) into Eq. (4), thus obtaining

f̃sk'd =
1

2p
E

−`

+`

dxe−ikxxf̂sx,0ddskyd ; f̃skxddskyd, s6d

wheredskyd is the Dirac delta-function andf̃skxd is the one-

dimensional Fourier transform of the functionf̂sx,0d. The
nondiffracting pulse corresponding to the boundary distribu-
tion of Eq. (5) is obtained after substituting Eq.(6) into Eq.
(1), which yields

f̂sx,Zd =E
−`

+`

dkxe
ikxxeihukxuZf̃skxd. s7d

This is the most general expression describing an ONP or a
pulse which is at the same time nondiffracting and one di-

mensional. Note thatf̂sx,Zd depends onx and Z in a quite
similar way through two exponentials, and that both factors

are affected by the functionf̃skxd at the same time. SinceZ
=z−Vt, the space and temporal behaviors of the pulse are
closely related, resulting in a strong space-time coupling
which is typical of nondiffacting pulses[18].

The pulse in Eq.(7) contains only the plane waves[each
one being eigen-solutions of Eq.(3) after ¹'

2 is replaced by
]x

2], whose wave vectors belong to the two straight lineskz
=hukxu which are the intersection between the conekz
=huk'u and the planeky=0. The main features characterizing
the pulse can be pointed out by representing it as a superpo-
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sition of two fields, each containing the plane waves belong-
ing to one of the two lineskz=hkx andkz=−hkx (with kz.0).
After some manipulation, Eq.(7) can be rewritten as

f̂sx,Zd = Fs+dsx − hZd + Fs−dsx + hZd, s8d

where we introduced the functions

Fs±dsjd =E
−`

+`

dkxe
ikxjus7kxd f̃skxd, s9d

whereusxd is the usual step-function. Note that, as a conse-
quence of Eq.(3), the pulse in Eq.(7) must satisfy the one-
dimensional wave equation

]2f̂

] x2 =
1

h2

]2f̂

] Z2 s10d

and that, consequently, Eq.(8) coincides with the
D’Alembertian solution of this equation. Equation(8) con-
tains a basic decomposition since it recasts the problem of
evaluating an ONP into that of evaluating the pair of func-
tions defined in Eq.(9). From this equation it is evident that

Fs+dsjd and Fs−dsjd are obtained from the functionf̂sx,0d
[whose Fourier transform isf̃skxd] by suppressing the posi-
tive kx.0 and negativekx,0 part of the spectrum, respec-

tively. Introducing the definition off̃skxd from Eq. (6) into
Eq. (9) and performing the integral overkx we obtain, after
introducing suitable terms exps±ekxd for ensuring conver-
gence

Fs±dsjd = ±
1

2pi
E

−`

+`

dx
f̂sx,0d

sj − xd 7 ie
, s11d

where the limite→0+ is understood to be taken after the
evaluation of the integral. Exploiting the well-known relation
sx± ied−1=Ps1/xd7 ipdsxd where P indicates the Cauchy
principal value, Eq.(11) finally yields

Fs±dsjd =
1

2
f f̂sj,0d 7 iH f̂sjdg, s12d

where

H f̂sjd =
1

p
PE

−`

+`

dx
f̂sj,0d
j − x

s13d

is the Hilbert transform off̂sj ,0d. Equation(12) relates the
functionsFs±d to the boundary distribution of the pulse and to
its Hilbert transform. The propagation scheme for ONP is
thus as follows: From the knowledge of boundary distribu-

tion f̂sx,0d of the pulse, it is sufficient to evaluate its Hilbert
transform so that Eq.(8), with the aid of Eq.(12), gives the
pulse for everyZ.

III. SPATIAL CHARACTERIZATION OF ONP

Equation(8) states that the ONP is the superposition of

two fields whose profiles, at any transverse planeZ=Z̄, co-

incide with their own distributions atZ=0 translated, along

the x-axis, from x=0 to x=hZ̄ and x=−hZ̄, respectively.

Suppose that the boundary distributionf̂sx,0d is localized
around the originx=0. It is easy to show that the Hilbert

transformH f̂sjd is also localized around the origin so that
the functionsFs±dsjd are not negligible only in a given neigh-
bor of j=0. Therefore, in the planexZ, the fieldsFs+dsx
−hZd and Fs−dsx+hZd globally resides around the straight
lines x= ±hZ (at least asymptotically forZ large enough),
respectively, so that(see Fig. 1) the overall shape of the
pulse is that of a letter X whose semiaperture anglef is
given by tanf=h (one-dimensional X wave). Since h is
directly related toV, it is evident that the speed of the pulse
can be experimentally measured simply measuringf. Taking
into account the relation connecting the Axicon anglec to h
we deduce thatf=p /2−c. Around the origin of the plane
xZ, the pulse generally exhibits a peak since the overlap
region betweenFs+dsx−hZd andFs−dsx+hZd is there not neg-
ligible.

In the case of even boundary distribution,f̂sx,0d
= f̂s−x,0d the spatial properties of the central peak can be
simply described. Let us consider the transverse and longitu-
dinal autocorrelation widths[20] given by

D' =

UE
−`

+`

dxf̂sx,0dU2

E
−`

+`

dxu f̂sx,0du2
, Di =

UE
−`

+`

dZf̂s0,ZdU2

E
−`

+`

dZu f̂s0,Zdu2
,

s14d

respectively. The former is an effective width of the bound-

ary distributionf̂sx,0d whereas the latter is a measure of the

longitudinal width of the on-axissx=0d pulse f̂s0,Zd. We
have chosen these kinds of widths since it can be shown(see
the Appendix) that, for our nondiffracting pulses, the relation

FIG. 1. Typical geometry of a ONP.
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Di =
1

2h
D' s15d

is satisfied. This is a remarkable relation joining the longitu-
dinal length of the central peak to its lateral width and it is an
evident manifestation of the strong space-time coupling char-
acterizing nondiffracting pulse. In fact, the quantityDt
=Di /V may be regarded as the time duration of the central
peak and Eq.(15) states that it is uniquely fixed by the trans-

verse lateral extension off̂sx,0d and by the velocityV of the
pulse. Equation(15) has a simple and intuitive graphical in-
terpretation. To this end, first note that it is easy to prove that,
introducing the widths of the functionsFs±dsjd, one has
Ds±d=D' /2 (see the Appendix). Referring to Fig. 1, it is evi-
dent that the central peak of the pulse, along thez-axis, prac-
tically fall off when the overlap region between the two arms
vanishes, i.e., whenD' /4=hDi /2, which coincide with Eq.
(15).

IV. ANALYTICAL EXAMPLES

In order to specialize the above general discussion, we
now consider some examples admitting analytical solutions.
Consider the ONP whose boundary distribution is

f̂sx,0d = f0
sinsKxd

Kx
, s16d

where f0 and K are constants, that is the well-known sinc

distribution. The functionf̂sx,0d is peaked at the originx
=0 and its width, according to Eqs.(14), is D'=p /K. It is

straightforward to prove that [20] H f̂sjd= f0f1
−cossKjdg / sKjd, so that the functions defined in Eq.(12) can
be expressed as

Fs±dsjd = f0e
7iKj/2

sinSKj

2
D

Kj
s17d

(note that their moduli are peaked atj=0). Inserting Eq.(17)
into Eq. (8) we readily get

f̂sx,Zd = f0
hKZ + eihKZfiKx sinsKxd − hKZ cossKxdg

iK2sx2 − h2Z2d
.

s18d

In Fig. 2, we plot, forh=2.18 (corresponding toV=1.1c),
the normalized field Ref f̂ / f0g from Eq. (18). Note that, as
expected, the field corresponding to the boundary sinc distri-
bution (at Z=0) breaks, for increasingZ, into two arms lying
on the two linesx=hZ and x=−hZ, respectively. From the
second of Eqs.(14) and (18) we obtain a longitudinal width
Di=p / s2hKd, which, compared withD'=p /K, confirms Eq.
(15) in this particular case.

As a further analytical example, let us consider the family
of ONP whose spectrum is

f̃ nskxd = f0s
n+1ukxune−sukxu, s19d

wheren=0,1, . . ., andf0 ands are constants. The interest in
this example emerges from the fact that these ONPs are the
one-dimensional counterpart of the well-known two-
dimensional X waves of Lu and Greenleaf[7], so that they
may be termed one-dimensional X waves. Inserting Eq.(19)
into Eqs.(9) we obtain

Fn
s±dsjd = f0

n!

S1 ± i
j

s
Dn+1 . s20d

Note that bothFn
s±d are peaked at the origin,s being a param-

eter setting their widths. Even if any one-dimensional X

wave f̂ nsx,Zd of this family can be directly obtained from
Eq. (8) with the aid of Eq.(20), it is convenient here to use
the relation

f̂ nsx,Zd = S s

ih

]

] Z
Dn

f̂0sx,Zd, s21d

where

f̂0sx,Zd = f0

2S1 −
ihZ

s
D

S1 −
ihZ

s
D2

+ Sx

s
D2 , s22d

as it can be shown by substituting Eq.(19) into Eq. (7). In
analogy with the two-dimensional case[11,19], Eq. (21)
shows that the whole family of one-dimensional X waves is

obtained by repeatedly differentiating the first pulsef̂0sx,Zd.
In Fig. 3 we plot the normalized field Ref f̂ n/ f0g of the n=0
and n=1 one-dimensional X waves, whose speed isV
=1.1c, corresponding toh=2.18. The essential features of
these fields are quite similar to those of the sinc X wave
depicted in Fig. 1. Comparing the one-dimensional X waves
of Eq. (21) with the two-dimensional ones[11,19], we note a

FIG. 2. Plot of the normalized field Ref f̂ / f0g of a ONP pulse
whose boundary distribution is the sinc function of Eq.(16), as a
function of Kx andKZ. The speed of the pulse chosen for this plot
is V=1.1c, corresponding toh=2.18.
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remarkable resemblance between their structures. Con-
versely, the most striking difference is the absence of half-
integer powers ofn in the denominator of the formers. More-

over, f̂0<x−2 for uxu→ +` whereas the first two-dimensional
X wave shows the asymptotical behavior ofsx2+y2d−2; this
implies that a one-dimensional X wave transversally decays
faster than the two-dimensional X wave of the same order.

V. CONCLUSIONS

Exploiting a formalism describing an arbitrary nondif-
fracting pulse propagating in vacuum, we have investigated
one-dimensional nondiffracting pulses(ONP), whose trans-
verse profile is a one-dimensional image at any transverse
plane. We have deduced a general expression showing that
an ONP is the superposition of two fieldsFs±d, depending on
space and time only through the combinationsx7hsz−Vtd,
respectively, and simply related to the boundary field distri-

bution f̂sx,0d by means of an Hilbert transform. The ob-
tained decomposition has allowed us to predict the major
ONP features, such as the characteristic X shape of the field
profile and the relation between the transverse and longitu-

dinal widths of the pulse(a relation having its origin in the
strong space-time coupling proper of nondiffracting pulses).
In addition, we have considered two analytical examples
where the above-mentioned properties can be checked. The
second of this example is of some interest in the frame of
shape-invariant beams, since it represents the one-
dimensional counterpart of the well-known family of funda-
mental X waves.

APPENDIX: TRANSVERSE AND LONGITUDINAL
WIDTHS

The widths defined in Eq.(14) can be manipulated by
exploiting Eq.(7). Substituting the former in the expression
for D' of Eq. (14), it is straightforward to prove that

D' = 2p
u f̃s0du2

E
−`

+`

dkxu f̃skxdu2
, sA1d

where use has been made of the Parseval theorem for chang-
ing the denominator. Less straightforward is the manipula-
tion of Di; after substituting Eq.(7) into its expression of Eq.
(14), we obtain

Di =

U 2

h
E

−`

+`

dkxf̃skxdE
0

+`

dZeikxZU2

2p

h
E

−`

+`

dkxf̃skxdE
−`

+`

dkx8 f̃*skx8ddsukxu − ukx8ud
, sA2d

where the integral representation of the Dirac delta function
has been exploited in the denominator. The integral overZ in
the numerator can be handled by introducing a convergence
factor exps−eZd (the limit e→0+ being understood to be
taken at the end of calculations), so that

E
0

+`

dZe−se−ikxdZ =
i

k + ie
= pdskd + iP

1

k
, sA3d

where P indicates the Cauchy principal value and we have
exploited the well-known relation sx± ied−1

=Ps1/xd7 ipdsxd. Taking into account the identity

dsukxu − ukx8ud = fuskxduskx8d + us− kxdus− kx8dgdskx − kx8d

+ fus− kxduskx8d + uskxdus− kx8dgdskx + kx8d
sA4d

and Eq.(A3), Eq.(A2) becomes

Di =
2p

h

U f̃s0d +
i

p
PE

−`

+`

dkx
1

kx
f̃skxdU2

E
−`

+`

dkxu f̃skxdu2 +E
−`

+`

dkxf̃skxd f̃*s− kxd
. sA5d

In the case of even boundary condition,f̂sx,0d= f̂s−x,0d, we

have f̃skxd= f̃s−kxd so that Eq.(A5) yields

FIG. 3. Plot of the normalized field Ref f̂n/ f0g pertaining to the
one-dimensional X waves(a) n=0 and(b) n=1 as a function ofx/s
and Z/s. The speed of the pulse chosen for this plot isV=1.1c,
corresponding toh=2.18.
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Di =
p

h

u f̃s0du2

E
−`

+`

dkxu f̃skxdu2
. sA6d

Comparing Eq.(A6) and Eq.(A1), we obtain Eq.(15). Let
us now evaluate the widths of the functionsF±sjd, defined as

Ds±d =

UE
−`

+`

djFs±dsjdU2

E
−`

+`

djuFs±dsjdu2
. sA7d

Inserting Eq.(9) into Eq. (A7) we obtain

Ds±d = p
u f̃s0du2

2E
−`

+`

us7kxdu f̃skxdu2
, sA8d

where we have exploited the relationus0d=1/2. In thecase

of even boundary condition[for which f̃skxd= f̃s−kxd] we ob-
tain from Eqs.(A8) and (A1) the relation

Ds±d =
1

2
D'. sA9d
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